Question 1

$$
f(x)=2 x^{2}-8 x+14, x \in \mathbb{R} .
$$

a) Express $f(x)$ in the form $a(x+b)^{2}+c$, where a, b and c are integer constants.
b) Find the coordinates of the minimum point on the curve with equation ...
i. $\quad \ldots y=f\left(\frac{1}{2} x\right)$.
ii. ... $y=f(x+1)-4$.

Question 5

Solve the following system of simultaneous equations

$$
\begin{gather*}
(x+y \sqrt{3})^{2}=56+12 \sqrt{3} \\
y=3 x . \tag{6}
\end{gather*}
$$

Question 8

The points A and B have coordinates $(0,-4)$ and $(3,-2)$, respectively.
a) Determine an equation for the straight line l which passes through the points A and B, giving the answer in the form $a x+b y+c=0$, where a, b and c are integers.

The point C lies on l, so that the distance $A C$ is $3 \sqrt{13}$ units.
b) Show, by a complete algebraic solution, that one possible set of coordinates for C are $(9,2)$ and find the other set.

Question 11

$$
f(x)=4 x^{2}+12 k x, x \in \mathbb{R},
$$

where k is a constant.
a) Show clearly that the equation $f(x)=9$ has two distinct real roots for all values of k.
b) Hence find the solutions of the equation $f(x)=9$, giving the answers in the form $p k \pm p \sqrt{k^{2}+1}$, where p is a constant to be found.

SOLUTIONS

1. a) SIGHT of $x^{2}-4 x+7$ MI

$$
a=2 \quad b=-2 \quad c=6 \quad B 3
$$

bI) $\quad(4,6) \quad \mathrm{A} \mid \mathrm{Al}$
II) $(1,2)$ Al Al
5.

$$
\begin{aligned}
& (x+3 x \sqrt{3})^{2}=56+12 \sqrt{3} \\
& x^{2}(1+3 \sqrt{3})^{2} \text { OR } x^{2}+6 \sqrt{3} x^{2}+27 x^{2}
\end{aligned}
$$

Sin of $28+6 \sqrt{3} \quad \mathrm{Bl}$

$$
\begin{aligned}
& \frac{56+12 \sqrt{3}}{28+6 \sqrt{3}}=2 \\
& x= \pm \sqrt{2} \\
& y= \pm 3 \sqrt{2}
\end{aligned} \quad \text { Al }
$$

8.

a) $\frac{-2-(-4)}{3-0}$ O.E M

$$
\begin{aligned}
& \frac{2}{3} \quad A 1 \\
& y=\frac{2}{3} x-4 \quad \text { OR } 2 x-3 y-12=0 \quad \text { Al }
\end{aligned}
$$

b) $\left(x, \frac{2}{3} x-4\right)$ MWIT $B \in$ ts COORDINATIS B I

$$
\begin{aligned}
& \sqrt{\left[-4-\left(\frac{2}{3} x-4\right)\right]^{2}+(0-x)^{2}}(=3 \sqrt{13}) \quad \text { Ml ust of fremwiA } \\
& \left.\sqrt{\frac{4}{9} x^{2}+x^{2}}=3 \sqrt{13}\right) \quad \text { Al corleof } \\
& \sqrt{\frac{13}{9} x^{2}}(=3 \sqrt{13}) \quad \text { M1 } \\
& \frac{13}{9} x^{2}=117 \quad \text { or } \frac{3}{4} x^{2}=9 \times 13 \quad \text { Ml } \\
& x^{2}=81 \quad \text { M1 } \\
& x= \pm 9 \quad \text { Al Al Al } \\
& (9,2) \quad(-9,-10) \quad \text { Al } \\
& 4 \quad 4
\end{aligned}
$$

WITH friotile
of subitanion
11.

$$
\text { a) } \begin{aligned}
& (12 k)^{2}-4 \times 4 \times(-9) \\
& 144 k^{2}+144
\end{aligned}
$$

IMPUIS Tits IS AWAYS ROSITuF/ OR AT LEAST 144 SO Al
b) $\frac{-12 k \pm \sqrt{144 k^{2}+144}}{2 \times 4}$ O.E MI

SIGT of $12 \sqrt{k^{2}+1}$.
BI
(nwor similate is competivig THE SQuARE)

$$
-\frac{3}{3} \pm \frac{3}{2} \sqrt{t^{2}+1}
$$

Al c.a.o

